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Abstract

At the present time a large number of Al methods have been developed in the field of pattern classification. In this paper, we will comp
the performance of a well-known algorithm in machine learning (C4.5) with a recently proposed algorithm in the fuzzy set communi
(NEFCLASS). We will compare the algorithms both on the accuracy attained and on the size of the induced rule base. Additionally, we v
investigate how the selected algorithms perform after they have been pre-processed by discretization and featureCse898iaifsevier
Science Ltd. All rights reserved

1. Introduction miscellaneous Al algorithms that have been developed in
the context of many research projects in the field of classi-
Pattern classification problems (Kuncheva, 1996), consistfication. Besides classical classification approaches, cur-
of assigning to an object, described as a point in a certainrently approaches are emerging which are based on fuzzy
feature spac®&’, a class labeb; from a predefined sét = set theory (Zadeh, 1965). This theory allows one to deal
{wywa...,wn}. The problem of designing a classifier is to  with vague concepts. Fuzzy statistical classification techni-
find a mappingD:S" — Q, optimal in the sense of a certain ques combine essentially the insights in fuzzy set theory
criterionJ(D). Itis a well-known result in statistical decision  with existing classification procedures. An excellent intro-
theory that the optimal classifier in terms df{called also duction to the domain of fuzzy classifiers can be found in
the Bayesian classifier) is the one that assigns to an arbitraryBezdek (1981).
n-tuple inS" the class labeb* corresponding to the highest In the present paper, we will compare a well-known clas-
posterior probability, i.ew* = arg may, (P(wx™). In con- sification technique in the field of machine learning, i.e.
trast to statistical classification procedures, the main goal in C4.5 (Quinlan, 1993) and compare its performance on
recently developed Al classification techniques is not the some benchmarking datasets with a fuzzy classification
construction of an (asymptotically) Bayesian optimal clas- algorithm, i.e. NEFCLASS (Nauck et al., 1996). Besides
sifier, but the preclusion of the fact that the entire classifi- comparing the performance on the original datasets we
cation process becomes a black box phenomenon. The Alwill also investigate how pre-processing of the data by

classifier can then be interpreted as a mapghgvhich means of discretization and feature selection will influence
contains a collection of “if..then” rules of the following the results.
global structure: The organization of the paper is as follows. In the first and

the second section, the classification algorithms (C4.5 and
NEFCLASS) used in the experiments are described. Next,
then the patterx™ belongs to class the performance of both algorithms is compared using seven
datasets. We compared the performance both before and

; () ; ; . .. . .
where the terminology;™ is used to denote théh compo-  afier discretization and feature selection. Finally, some con-
nent or feature in an-tuplex™ in S". The termsA ... A, cluding remarks are given.

represent sets of elements whose particular values, together
with the labelw, have to be determined by the applied Al
method. At the present time there exists a wide variety of 2. c4.5

Re = (if (VA ) and ($VeA, )and...and(xeA,, \)
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major modifications since then. The essence of the algo-

rithm boils down to the construction of a classification
tree where every level coincides with a particular feature
in the feature spac&" and the branches correspond to
certain attribute values or ranges. What follows is only a
compact overview of the algorithm. A comprehensive treat-
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calculates for each classification node a kind of predicted
error rate based on the total aggregate of misclassifications
at that particular node. The error rate is calculated as the
upper limit of ana% confidence interval for the me&iN
of a binomial distributiorB(E/N) whereE/N is the propor-
tion of misclassifications at the node at issue. The error-

ment is given in Quinlan (1993). based pruning technique essentially boils down to the
C4.5 has been calledgreedyalgorithm since it applies  replacement of vast subtrees in the classification structure
some kind of steepest descent heuristic to optimize the by singleton nodes or simple branch collections if these
structure of the classification tree. Basically, the main goal actions contribute to a drop in the overall error rate of the
of the heuristic consists of the construction of a tree where root node.
every leaf node contains only elementd with the same After the execution of the recursive partitioning algo-
class labely, by exploiting some sort of recursive partition- rithm, and the aforementioned error-based pruning, one
ing method of the feature space. In that respect, the algo-has obtained a complete classification structure that could
rithm makes use of the information basgdin and gain directly be applied to classify a wide set of unseen cases
ratio criteria to effectively construct a tree-like structure with high accuracy. However, the inconvenient represen-
with high classification accuracy. In order to determine tation of the classification process by means of a treelike
which feature and which feature values are best suited tooutline compels the transformation into some kind of rule-
be assigned to a certain node and its correspondingbased knowledge entity. Therefore, an initial rule base is
branches, C4.5 calculates the global entropy reduction of obtained by top-down progressing the entire classification
the dataset by considering all possible scenarios of associatiree and creating a rule for every single path encountered.
ing a particular attribute to the node at issue and partitioning The resulting rule base might, however, contain a substan-
the entire feature range into miscellaneous subsetstial amount of complex classification rules. Hence, a reduc-
(branches). The entropy decline (gain) at the root level is tion in rule base magnitude and complexity can be achieved
then given by means of the following expression: by eliminating certain conditions in a rule premise. C4.5
determines the potential benefits of removing sets of condi-

frea(G. T) . freq(C;, T) ITil tions by calculating error estimates for every possible con-
— Z X logy Z " : . :
T ST Tl dition reduction scenario. In that respect, error estimates of
. an arbitrary ruleR and its reduced premise part version
freq(G, T R\{&} are given byE,/N; and E; + E»)/(N; + N,) where

X [— D
j=1

whereT is the entire dataseC; represents the number of

n-tuples of clasg, n gives the number of branches at the

root node andr; stands for the collection af-tuples to be  process of error-based pruning, upper limits are calculated

positioned in subsat Once a feature and its correspond- for the above error estimates. A condition geis then

ing feature subsets are identified at the root level in the removed fromR if the global error rate oR\{&} is lower

classification tree, the algorithm moves on to the next than the one folR. When the total of different condition

level and again computes the maximum possible downfall reduction scenarios to be examined becomes too large,

in global entropy. Sometimes C4.5 employs the gain ratio simulated annealing is applied.

criterion instead of the gain measure to cope with the

disadvantageous effects of dividing a dataset into a too

large a number of subsets at a particular node. The gain3. NEFCLASS

ratio of a scenaricb is hereby defined as:

freq(C, T,
)xlogz<—req|(Till )ﬂ

N is the total ofn-tuples that satisfg, N, is the comple-
ment ofN4, E; is the proportion ofN, elements that do not
belong to the clas®;gy andE; is the fraction ofN, cases

that do not possess the class labgt). By analogy with the

IT;

. Coy o The fuzzy neural network NEFCLASS was been created
gain ratiq®) = gain(@)/split info(®) at the Technical University of Braunschweig, Germany,
IT\ IT| around 1995. The NEFCLASS learning algorithm comes
|-|-| log, (m) down to the construction of a three-level multi-layer Percep-
tron network structure with fuzzy activation functions for
The resulting classification tree one obtains by recursively units at the intermediate (hidden) level. What follows is a
partitioning a training dataset as described above often givesbrief introduction of the fuzzy logic reasoning concept,
bad performance when practiced on a set of unseen testogether with a compact overview of the working method
cases. The C4.5 algorithm applies an error-based pruningof NEFCLASS. Detailed expositions of fuzzy set theory are
strategy to deal with the inconvenient drawbacks one is widely available (e.g. Zimmermann, 1991) while a thorough
confronted with when overtraining or overfitting of explanation of NEFCLASS (and some other fuzzy neural
classification trees has occurred. As a matter of fact, C4.5networks) can be found in Nauck et al. (1996).

split info(®) = Z

i=1



J. Martens et al. / Expert Systems with Applications 15 (1998) 375-381 377

3.1. Fuzzy set theory fundamentals implication-based reasoning enforces a way of composing
fuzzy relations. Zadeh (1979) came up with the theory of
Fuzzy set theory was originally introduced by Zadeh approximate reasoning as a framework for dealing with
(1965) in order to deal with non-precise and vague informa- imprecise information and performing basic inference pro-
tion. In classical set theory, a subsebf X (the universe) cedures, very much like the classical modus ponens and
can be written as a characteristic functigf which associ- modus tollens principles. According to Zadeh'’s theory, the
ates every element iX with a value 0 or 1. In that way inference of a rule (an implicatioR) “if x equalsd; theny
elements oK either do or do not belong #. A fuzzy subset equalsy,” with the fact (A) that “x equalsy;” gives rise to
J1z ON the other hand combines every membeXafiith a the statement) that “y equalsd,” where 9, is defined as
value in the continuous interval [0,1]. The characteristic ¥, =107 oT. In order to determine the membership function
function of 9y, is then given by means of a so-called of the fuzzy conclusion set, one extends; into theT-
membership functioru,,, which depicts some kind of universe, computes the intersection betwdérand the
mathematical function on the universe. In the remainder extension ofd; and finally projects the resulting set on
of the text,&,,(X) is replaced by} (x). the domain ofy:
In order to be able to perform classical set theory opera- . /
tions on fuzzy sets, the intersection and union of two fuzzy projy (" N cextyy (91))
setsd; andd, are defined as: If one definesI' as a relation orX with X = x % ;X;,
, (i,ip...,i) as a subsequence of (1,29), (i1j2..-,j1) as
(31 1192)(4) = min{d,(x), 529} (92U 92)(x) the complementary subsequence of (1,4)) and Y as
= max{d,(X), 3,(X)} X rknzlxim, the projection off* on Y is then determined by:

The above min and max operators represent the so-calledproj, (I') = J sup pr (Xl, ---!Xn)/(xip ___,xik)
Zadeht-norms and-conorms to model the intersection and Y N %

union operation of fuzzy sets. In addition to this min/max
pair of operators, sometimes other designsg-nbrms and
t-conorms are used (Weber, 1983). The definition of the
above intersection and union operators enables us in fact to
establish an exhaustive table to depict the truth for some
combined propositions of; and¢,. In order to complete domain, set up by the l-dimensional hyp(_erplane
this table with truth values for fuzzy implications, the con- hy Py, % through (Xil’ ""X‘k) para-llel .to the universes
cept of a fuzzy relation has to be introduced. Fuzzy relations 7J1’ = X Fig. 1 illustrates the projection procedure of a

are to be considered as fuzzy setSQefuples and denoted two- d|mep5|opal Seiir(X1,Xo) On theY-axis, :
as: The cylindrical extension is more or less the opposite of

the projection and extends the original domain of a fuzzy set
y to a greater universe. WitH representing a relation ovj
X, xﬂ’“‘l’fuz(xl' %)/ (X0, . ) Y= X ';nzlxim andX= x L, X; (see Fig. 2), the cylindrical
extension oH into X is defined as:

Carrying out a projection essentially eliminates the uni-
versesX;, ...X; and associates each vectos , ...,%; ) of

the prOJected fuzzy set with a membership value equal to
the supremum of the original membership function on a

where this integral has to be read as some kind of idem-
potent integration which identifies for every element
(X1,...,Xg) in the S” space its membership valyg, . with
respect to the fuzzy relation. A possible relation wfea 2
andX; = X, = {1,2,3} might, for example, shade the con- When using a Zadettnorm, application of the cylindrical
cept “is approximately equal to” and be stated as 1/(11)  extension and projection to deduct the resulting statement
1/(2,2) + ... + 0.8/(1,2)+ ... + 0.3/(3,1). Fuzzy impli-  of the inference of a rul¢" and a factA gives rise to the
cations can now generally be written as a relation betweenfollowing membership function fod:
a disjunction oft-norms or a conjunction afconorms on :
one side and the fuzzy set in the conclusion part of the A Sfp{m'”(”ﬂ;(’(’ Y): e (% y))}
implication on the other side. In that respect, a rule of the
form “if x;isd;andx;isd,thenyisw” is jotted down as a
relationT’ wherel' = ((3(d1,92)w); ¥4, ¥, andw are fuzzy
subsets in the respective universeg X, andY; ¢ is an
implication operator; and3 represents a-norm. The
membership function of' can then easily be obtained by
substituting the fuzzy subsets in the latter expression by
their corresponding membership functions.

While the above rationale empowers us in modelling
fuzzy implications by means of a fuzzy relation, Fig. 1. Projection ofup(X1,X) on Y.

cexty(H) - JMH (Xiys % )/ (Xe, -0, Xg)
X

HY(Xz)

Hr(xl,xz)
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Fig. 2. Cylindrical extension ofy(Xy) into (X3,X5).
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which embodies in essence the measure of compatibility of

A with T. Fig. 3. Fuzzy sets and associated linguistic concepts for a particular input

neuron.

3.2. The NEFCLASS algorithm ) o
3.2.1. Construction of an initial rule base

During a learning phase, NEFCLASS creates a fuzzy rule During the rule ba_se cons_truction phase, patterns are pre-
base by expressing every single rule in terms of a fuzzy sented to the algorlthm, hldden_ neurons are created and
implication. This rule base is then used in a test phase to attached to a particular output unit and fuzzy sets are placed
classify new unseen cases by applying projection and O" connections between input units and hidden nodes. The
cylindrical extension between every test caseand the rule base learning algorithm mainly consists of five different
existing set of classification ruléd. This latter operation ~ St€PS:
leads to an activation measure for every rlen IT which 1.
indicates how strongly a presented test case matches the heret, covers the desired network output for pattern
premise part ofT". NEFCLASS will classify the case at p. V input units o; € I, find ﬂgf,f(i) () with
issue into the class which corresponds to the conclusion (C‘i))(t): ma)%e{l,...,¢ai}{u(a‘)(t)( (0)i (}1)

propagate the next pattern,(;) through the network

B
part of the rule with the uppermost activation. Prior to the 2 V\mén no rule unity, exis’{g with W, (t) = Mg(a(l))(t)
gy ey ’

very beginning of the learning algorithm an empty neural W&i’yh(t)=u§“f’>(t), Wﬁh(t)=uia}“)ﬂ)(t) create a new
network is set up with as many input neurons as there are  ryle unit and connect it with outpug Cﬁeur@a if tyg, = 1.
features in the dataset, as many output neurons as there arg. return to 1 as long as there remain unprocessed input/
different class labels and zero hidden neurons. Aside from output pairs

the construction of the neural framework a specific collec- 4. the final rule base is determined by means of the follow-

tion of fuzzy sets is defined for each feature. Fuzzy sets for a
specific attribute are all of a triangular type and correspond
to feature-related linguistic concepts such as “small”,

ing routine: steps 1 through 4 are executed without an
upper bound on the maximum number of rules in the
network.

“medium” and “large” (Fig. 3).

Fig. 4 shows a fuzzy three-layer Perceptron NEFCLASS When all patterns have been sent through the network,'
network after the execution of the learning algorithm. Since ©N€ calculates for each separate class the accumulated acti-
the network contains two input units, four hidden neurons Vation (aa) of every single rule unit by propagating every

and two output cells, it must have been trained on a datasetpattem_ once more_through the network. If the aa value for a
with n-tuples ¥?, n = 2 that belong to a certain classout rule unit for a certain class labej exceeds the value for the

of the set fo1,04}. For every input neurom; is determined a !abelwi out of the conclusion part. of the rule, the conqlusion
group of membership function@j M, j € {1---‘1’04} which is altered fromw; to w;. After modifying some _con_clusmns,
nuance different linguistic concepts on the corresponding all patterns are presented to the_networkathlrd time and one
feature domain. By associating a single rule for every c@lculates now for each rule unit the value:

neuron {) on the hidden layer, adjusting its premise part v, = Z (1V) &

to a conjunction of fuzzy sets on input Younit junctions neas

and setting its conclusion part to the sole predeiatoutput
unit link, one obtains the full set of classification rules that
enclose the entire NEFCLASS network. If one equaigs 1
to 3 Vi, it can be seen in Fig. 4 every predefined member- &= _1 else
ship function is (accidentally) preserved in at least one rule

ri, i €{1,2,3,4}. The final rule base is then constructed by keeging hid-

The establishment of a network structure takes place den units with the highest, value. In that way, one effec-
during the learning algorithm of NEFCLASS. This algor- tively avoids the learning process becoming dependent on
ithm is split up into two subroutines: the construction of an the sequence of presented patterns. Fig. 5 illustrates the
initial rule base and the tuning of fuzzy set membership possible structure of a NEFCLASS network after processing
functions. two patterns.

Whereaé,l)h = activation of rule unit, for patternp and

if pis classified correctly
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Fig. 4. NEFCLASS network (left) and its corresponding rule base (right).

3.2.2. The fuzzy set learning algorithm

After NEFCLASS has produced a rule base, fuzzy sets on
input to hidden unit connections are tuned to optimize
classification results. The fuzzy set learning algorithm of
NEFCLASS is a variant of the well-known back-
propagation algorithm to train multi-layer Perceptron
networks by altering weights on neuron to neuron junctions.
Since non-differentiablg-norms are used as activation
functions for hidden units, direct application of classical
back-propagation to fuzzy NEFCLASS systems is impossi-

ble. Therefore, one has to forge a steepest descent heuristi

which adjusts fuzzy membership functions on the basis of
the fuzzy error of an output ung,:

7]

wheret,;_is the desired output of output urilt ande is the
error sensitivity.

The fuzzy error back-propagation heuristic proceeds then
as follows:

_o@

Epg, =1— e[*s(two oo

1. Send the next input/output paiiipf,) through the
network.

2. Calculate for each output neuron the valbig =

_o? i -

Sgn(tyg, opBO)Epﬁo where sgn stands for a signum trans
fer function that takes on the value 1 ef 1 depending
on the sign of the argument.

3. For each rule unit whose output 0:

calculate:

—od (1 o) T W@
o

(SpVh Prn vhBo (t)apﬂo

find ;i € I so thatW<), (t)(0)) = min;. {w,;l,zh (O )}
modify the structure of the fuzzy séM(o;,vp)(t) by
means of the following delta-values, o, ando repre-

sent different learning rates):

L]

b = 0a.dp,.(C—a).sgr(os) —b)
0pa = — 0p.0p,.(C—a)+0pp
Opc = 0¢.0p,.(C—a)+ Opp

The above delta-values indicate the mutations that will
have to be applied to the structure poiaf andc.

f 1pg
i 1,

REIS S
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equals um(al)(t) A ipg, equals um(az)(t) then o,

equals um(al)(t) A ipg, equals uxz(az)(t) then ,

equals um(al)(t) A ipg, equals uxz(mz)(t) then o,

equals uxz(al)(t) A ipg, equals um(“z)(t) then o,

4. When a full cycle has been processed (all patterns are
propagated through the network) and some stopping con-
dition is met, then stop; otherwise continue with step 1
(see Fig. 6 for an example).

4. Results

In this section, we will compare the performance of C4.5
and NEFCLASS on a group of seven datasets which are

%aken from the UCI repository at Irvine, CA. Two experi-

ments were conducted. In the first experiment, both algo-
rithms were compared on the original datasets. The only
pre-processing done was the removal of the unknown values
from the datasets. In the second experiment, some additional
pre-processing (feature selection and discretization) was
performed before running the classification algorithms.
The accuracy percentages were achieved by performing a
stratified 10-fold cross validation.

4.1. Before discretization and feature selection

In Table 1 results of C4.5 and NEFCLASS on the
training set and on the test set are depicted. Also the number
of rules used to classify the objects can be found in the
table.

A quick comparison reveals that on average the perfor-
mance of C4.5 is better. Furthermore, the incapability of
NEFCLASS to build compact rule bases can be concluded.
If one takes a closer look at the rule base construction phase
of NEFCLASS, the inevitability of encountering classifi-
cation rule abundance becomes clear. If one defines three

Fig. 5. Possible network structure after processing two patterns.
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Fig. 6. Possible tuning scenarios of some membership functions.

linguistic concepts for every feature out of a dataset contain- the discretization algorithm of Fayyad and Irani (1993) and
ing y 10-tuplesx®?, the total number of rules might come the feature selection algorithm proposed by Kohavi (1995).
very close toy since generally ¥ is much higher thag. In As can be seen in Table 2, minor accuracy differences
fact, it is easy to see rule base magnitude will be a decreas-between C4.5 and NEFCLASS exist for some datasets
ing function of global dataset entropy, and hence of the (breast, heart, monks2 and pima) while huge contrasts can
overall degree of attribute to attribute correlations. In be observed for others (aucrx, monksl, monks3).
that respect, great care should be taken when adjudging On average, C4.5 still outperforms NEFCLASS although
NEFCLASS of composing complex collections of rules the difference is smaller compared to the results without
since the results below are retrieved by imposing no discretization and feature selection. Another observation
restrictions at all on the number of classification rules. we can make is that although the accuracy attained after
Moreover, several experiments have been conducted indiscretization and feature selection is even higher, the
which a decreasing upper bound was instated on the exteninumber of rules needed to make a classification is reduced.
of generated NEFCLASS rule bases. This reduction is rather small for C4.5, but for NEFCLASS
Fig. 7 shows (full lines represent results on training data, a very large reduction is obtained. This reduction is very
dashed lines give the performance on test data) rule basesmportant if we want to explain to the user the decision
can be shrunk for some datasets (like breast and pima) to theaaken in a given situation because compactness of a classi-
level of 5% of their original size without a substantial loss in fier can greatly enhance its comprehensibility. For example,
accuracy while for other datasets (like heart) rule base con-in Wets et al. (1997) it was demonstrated how after discre-
tractions lead to a collapse in performance. tization and feature selection decision tables can be used to
In the context of the preceding phenomena, it seems effectively visualize the extracted knowledge to the user.
imperative we integrate the NEFCLASS algorithm with
some kind of auxiliary processing to create acceptable

rule base magnitudes without causing global downfalls in 100,0 ; breast
accuracy for particular datasets. 80,0
4.2. After discretization and feature selection 60,0 E
40,0 |

In the second experiment we conducted, it was investi- 20,0
gated how the results were influenced by means of discre- 0.0 L .
tization (the process which transforms continuous features ) © 3 N 28 g
in nominal ones by splitting up the domain of the feature in -
non-overlapping partitions) and feature selection (selecting Fig. 7. Accuracy as a function of rule base extent.

the relevant subset of features). Both discretization and
feature selection reduce the possible hypothesis space and

so make it easier for the learning algorithm to classify new ;able 1 . L i

. . . . esults before discretization and feature selection

instances. It may seem strange that these simplifications

may result in better classifiers because general opinion hasPata  Acc. training dat~  Acc. test data No. of rules
it that it is best to collect as many data as possible, and c45 NEE. C45 NEF. c45 NEF.
subsequently let the learning system pick the relevant attri-
butes. Of course, if an ideal algorithm should be used, this

Aucrx 91 89.4 98.7 87.5 12 283

T - Breast 97.1 95.1 94.7 95.6 16 218
algorithm’s performance should not degrade if more data peart 91 92.0 77 61 13 237
are present. In practice, however, it has been shown that themonks1 100 86.6 100 81.6 22 208
performance of most learning algorithms degrades severelyMonks2 ~ 88.4 86.8 69.8 83.4 34 211
when too many irrelevant features are present in the data.Monks3 99 843 o8 808 12 210

Pima 68.6 74.4 63.3 73.4 9 163

Many discretization and feature selection and discretization

i o . ) ) AVG 90.7 86.9 85.9 80.5 16.9 2186
algorithms exist in the literature. In this experiment, we used
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Table 2 obtained by pre-processing both C4.5 and NEFCLASS
Results after discretization and feature selection with discretization and feature selection. This is very impor-
Data  Acc.training dai  Acc. test data No. of rules tant if we not only want to use the rules for classification

purposes but also to explain to the user why a certain deci-

C4.5 NEF. C4.5 NEF. C4.5 NEF. sion has been made.

Aucrx 87 85.4 85 95.4 3 22

Breast 96.7 97 96.5 95.2 5 18

Heart 83.8 83.8 82.7 82.5 8 23

Monksl 100 83.6 100 83.0 22 18 References
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