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Abstract

At the present time a large number of AI methods have been developed in the field of pattern classification. In this paper, we will compare
the performance of a well-known algorithm in machine learning (C4.5) with a recently proposed algorithm in the fuzzy set community
(NEFCLASS). We will compare the algorithms both on the accuracy attained and on the size of the induced rule base. Additionally, we will
investigate how the selected algorithms perform after they have been pre-processed by discretization and feature selection.q 1998 Elsevier
Science Ltd. All rights reserved

1. Introduction

Pattern classification problems (Kuncheva, 1996), consist
of assigning to an object, described as a point in a certain
feature spaceSn, a class labelq i from a predefined setQ ¼

{q1,q2,…,qM}. The problem of designing a classifier is to
find a mappingD:Sn → Q, optimal in the sense of a certain
criterionJ(D). It is a well-known result in statistical decision
theory that the optimal classifier in terms ofJ (called also
the Bayesian classifier) is the one that assigns to an arbitrary
n-tuple inSn the class labelq* corresponding to the highest
posterior probability, i.e.q* ¼ arg maxq (P(qlx (n)). In con-
trast to statistical classification procedures, the main goal in
recently developed AI classification techniques is not the
construction of an (asymptotically) Bayesian optimal clas-
sifier, but the preclusion of the fact that the entire classifi-
cation process becomes a black box phenomenon. The AI
classifier can then be interpreted as a mappingD̃, which
contains a collection of ‘‘if…then’’ rules of the following
global structure:

Rk ; (if (x(n)
1 eA1,k) and (x(n)

2 eA2,k)and…and(x(n)
n eAn,k)

then the patternx(n) belongs to classql

where the terminologyx(n)
j is used to denote thejth compo-

nent or feature in ann-tuplex (n) in Sn. The termsA1;k…An;k

represent sets of elements whose particular values, together
with the labelq l have to be determined by the applied AI
method. At the present time there exists a wide variety of

miscellaneous AI algorithms that have been developed in
the context of many research projects in the field of classi-
fication. Besides classical classification approaches, cur-
rently approaches are emerging which are based on fuzzy
set theory (Zadeh, 1965). This theory allows one to deal
with vague concepts. Fuzzy statistical classification techni-
ques combine essentially the insights in fuzzy set theory
with existing classification procedures. An excellent intro-
duction to the domain of fuzzy classifiers can be found in
Bezdek (1981).

In the present paper, we will compare a well-known clas-
sification technique in the field of machine learning, i.e.
C4.5 (Quinlan, 1993) and compare its performance on
some benchmarking datasets with a fuzzy classification
algorithm, i.e. NEFCLASS (Nauck et al., 1996). Besides
comparing the performance on the original datasets we
will also investigate how pre-processing of the data by
means of discretization and feature selection will influence
the results.

The organization of the paper is as follows. In the first and
the second section, the classification algorithms (C4.5 and
NEFCLASS) used in the experiments are described. Next,
the performance of both algorithms is compared using seven
datasets. We compared the performance both before and
after discretization and feature selection. Finally, some con-
cluding remarks are given.

2. C4.5

The C4.5 machine learning program was originally
written by Quinlan in the 1980s and has undergone lots of
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major modifications since then. The essence of the algo-
rithm boils down to the construction of a classification
tree where every level coincides with a particular feature
in the feature spaceSn and the branches correspond to
certain attribute values or ranges. What follows is only a
compact overview of the algorithm. A comprehensive treat-
ment is given in Quinlan (1993).

C4.5 has been called agreedyalgorithm since it applies
some kind of steepest descent heuristic to optimize the
structure of the classification tree. Basically, the main goal
of the heuristic consists of the construction of a tree where
every leaf node contains only elementsx (n) with the same
class labelq l by exploiting some sort of recursive partition-
ing method of the feature space. In that respect, the algo-
rithm makes use of the information basedgain and gain
ratio criteria to effectively construct a tree-like structure
with high classification accuracy. In order to determine
which feature and which feature values are best suited to
be assigned to a certain node and its corresponding
branches, C4.5 calculates the global entropy reduction of
the dataset by considering all possible scenarios of associat-
ing a particular attribute to the node at issue and partitioning
the entire feature range into miscellaneous subsets
(branches). The entropy decline (gain) at the root level is
then given by means of the following expression:

¹
∑k

j ¼ 1

freq(Cj , T)
lTl

3 log2
freq(Cj , T)

lTl

� �
¹

∑n

i ¼ 1

lTi l
lTl

3 ¹
∑k

j ¼ 1

freq(Cj ,Ti)
lTi l

3 log2
freq(Cj ,Ti)

lTi l

� �" #
whereT is the entire dataset,Cj represents the number of
n-tuples of classj, n gives the number of branches at the
root node andTi stands for the collection ofn-tuples to be
positioned in subseti. Once a feature and its correspond-
ing feature subsets are identified at the root level in the
classification tree, the algorithm moves on to the next
level and again computes the maximum possible downfall
in global entropy. Sometimes C4.5 employs the gain ratio
criterion instead of the gain measure to cope with the
disadvantageous effects of dividing a dataset into a too
large a number of subsets at a particular node. The gain
ratio of a scenarioF is hereby defined as:

gain ratio(F) ¼ gain(F)=split info(F)

split info(F) ¼
∑n

i ¼ 1

lTi l
lTl

3 log2
lTi l
lTl

� �
The resulting classification tree one obtains by recursively
partitioning a training dataset as described above often gives
bad performance when practiced on a set of unseen test
cases. The C4.5 algorithm applies an error-based pruning
strategy to deal with the inconvenient drawbacks one is
confronted with when overtraining or overfitting of
classification trees has occurred. As a matter of fact, C4.5

calculates for each classification node a kind of predicted
error rate based on the total aggregate of misclassifications
at that particular node. The error rate is calculated as the
upper limit of ana% confidence interval for the meanE/N
of a binomial distributionB(E/N) whereE/N is the propor-
tion of misclassifications at the node at issue. The error-
based pruning technique essentially boils down to the
replacement of vast subtrees in the classification structure
by singleton nodes or simple branch collections if these
actions contribute to a drop in the overall error rate of the
root node.

After the execution of the recursive partitioning algo-
rithm, and the aforementioned error-based pruning, one
has obtained a complete classification structure that could
directly be applied to classify a wide set of unseen cases
with high accuracy. However, the inconvenient represen-
tation of the classification process by means of a treelike
outline compels the transformation into some kind of rule-
based knowledge entity. Therefore, an initial rule base is
obtained by top-down progressing the entire classification
tree and creating a rule for every single path encountered.
The resulting rule base might, however, contain a substan-
tial amount of complex classification rules. Hence, a reduc-
tion in rule base magnitude and complexity can be achieved
by eliminating certain conditions in a rule premise. C4.5
determines the potential benefits of removing sets of condi-
tions by calculating error estimates for every possible con-
dition reduction scenario. In that respect, error estimates of
an arbitrary ruleR and its reduced premise part version
R\{ «} are given byE1/N1 and (E1 þ E2)/(N1 þ N2) where
N1 is the total ofn-tuples that satisfy«, N2 is the comple-
ment ofN1, E1 is the proportion ofN1 elements that do not
belong to the classq i(R) andE2 is the fraction ofN2 cases
that do not possess the class labelq i(R). By analogy with the
process of error-based pruning, upper limits are calculated
for the above error estimates. A condition set« is then
removed fromR if the global error rate ofR\{ «} is lower
than the one forR. When the total of different condition
reduction scenarios to be examined becomes too large,
simulated annealing is applied.

3. NEFCLASS

The fuzzy neural network NEFCLASS was been created
at the Technical University of Braunschweig, Germany,
around 1995. The NEFCLASS learning algorithm comes
down to the construction of a three-level multi-layer Percep-
tron network structure with fuzzy activation functions for
units at the intermediate (hidden) level. What follows is a
brief introduction of the fuzzy logic reasoning concept,
together with a compact overview of the working method
of NEFCLASS. Detailed expositions of fuzzy set theory are
widely available (e.g. Zimmermann, 1991) while a thorough
explanation of NEFCLASS (and some other fuzzy neural
networks) can be found in Nauck et al. (1996).
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3.1. Fuzzy set theory fundamentals

Fuzzy set theory was originally introduced by Zadeh
(1965) in order to deal with non-precise and vague informa-
tion. In classical set theory, a subsetc of X (the universe)
can be written as a characteristic functionwc, which associ-
ates every element inX with a value 0 or 1. In that way
elements ofX either do or do not belong toc. A fuzzy subset
c fuz on the other hand combines every member ofX with a
value in the continuous interval [0,1]. The characteristic
function of c fuz is then given by means of a so-called
membership functionmcfuz

which depicts some kind of
mathematical function on the universe. In the remainder
of the text,c fuz(x) is replaced byc(x).

In order to be able to perform classical set theory opera-
tions on fuzzy sets, the intersection and union of two fuzzy
setsc1 andc2 are defined as:

(c1 dc2)(x) ¼ min{c1(x),c2(x)} (c1 cc2)(x)

¼ max{c1(x),c2(x)}

The above min and max operators represent the so-called
Zadeht-norms andt-conorms to model the intersection and
union operation of fuzzy sets. In addition to this min/max
pair of operators, sometimes other designs oft-norms and
t-conorms are used (Weber, 1983). The definition of the
above intersection and union operators enables us in fact to
establish an exhaustive table to depict the truth for some
combined propositions ofc1 andc2. In order to complete
this table with truth values for fuzzy implications, the con-
cept of a fuzzy relation has to be introduced. Fuzzy relations
are to be considered as fuzzy sets ofQ-tuples and denoted
as:∫

X1

…
∫

XQ

mcfuz
(x1, …,xQ)=(x1, …,xQ)

where this integral has to be read as some kind of idem-
potent integration which identifies for every element
(x1,…,xQ) in the SQ space its membership valuemcfuz

with
respect to the fuzzy relation. A possible relation whenQ ¼ 2
andX1 ¼ X2 ¼ {1,2,3} might, for example, shade the con-
cept ‘‘is approximately equal to’’ and be stated as 1/(1,1)þ

1/(2,2) þ … þ 0.8/(1,2)þ … þ 0.3/(3,1). Fuzzy impli-
cations can now generally be written as a relation between
a disjunction oft-norms or a conjunction oft-conorms on
one side and the fuzzy set in the conclusion part of the
implication on the other side. In that respect, a rule of the
form ‘‘if x1 is c1 andx2 is c2 theny is q’’ is jotted down as a
relationG whereG ¼ i(I(c1,c2)q); c1, c2 andq are fuzzy
subsets in the respective universesX1, X2 and Y; i is an
implication operator; andI represents at-norm. The
membership function ofG can then easily be obtained by
substituting the fuzzy subsets in the latter expression by
their corresponding membership functions.

While the above rationale empowers us in modelling
fuzzy implications by means of a fuzzy relation,

implication-based reasoning enforces a way of composing
fuzzy relations. Zadeh (1979) came up with the theory of
approximate reasoning as a framework for dealing with
imprecise information and performing basic inference pro-
cedures, very much like the classical modus ponens and
modus tollens principles. According to Zadeh’s theory, the
inference of a rule (an implicationG) ‘‘if x equalsc1 theny
equalsc2’’ with the fact (L) that ‘‘x equalsc9

1’’ gives rise to
the statement (D) that ‘‘y equalsc9

2’’ where c9
2 is defined as

c9
2 ¼ c9

1 o G. In order to determine the membership function
of the fuzzy conclusion setc9

2 one extendsc9
1 into theG-

universe, computes the intersection betweenG and the
extension ofc9

1 and finally projects the resulting set on
the domain ofy:

projY(Gd cextX3Y(c9
1))

If one definesG as a relation onX with X ¼ 3 Q
i ¼ 1Xi,

(i 1,i 2,…,i k) as a subsequence of (1,2,…,Q), (j 1,j 2,…,j 1) as
the complementary subsequence of (1,2,…,Q) and Y as
3 k

m¼ 1Xim, the projection ofG on Y is then determined by:

projY(G) ¼

∫
Y

sup
xj1

, …,xj1

mG x1, …,xQ

ÿ �
= xi1, …,xik

ÿ �
Carrying out a projection essentially eliminates the uni-
versesXj1…Xjl and associates each vectorxi1, …,xik

ÿ �
of

the projected fuzzy set with a membership value, equal to
the supremum of the original membership function on a
domain, set up by the l-dimensional hyperplane
hypxj1

, …,xjl
through xi1, …,xik

ÿ �
parallel to the universes

Xj1, …,Xjl . Fig. 1 illustrates the projection procedure of a
two-dimensional setmG(x1,x2) on theY-axis.

The cylindrical extension is more or less the opposite of
the projection and extends the original domain of a fuzzy set
to a greater universe. WithH representing a relation onY,
Y¼ 3 k

m¼ 1Xim andX ¼ 3 Q
i ¼ 1Xi (see Fig. 2), the cylindrical

extension ofH into X is defined as:

cextX(H)¼

∫
X

mH xi1, …,xik

ÿ �
= x1, …,xQ

ÿ �
When using a Zadeht-norm, application of the cylindrical
extension and projection to deduct the resulting statementD

of the inference of a ruleG and a factL gives rise to the
following membership function forc9

2:

mc9
2
(y) ¼ sup

x
min mc9

1
(x,y),mG(x,y)

� �n o

Fig. 1. Projection ofmG(x1,x2) on Y.
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which embodies in essence the measure of compatibility of
L with G.

3.2. The NEFCLASS algorithm

During a learning phase, NEFCLASS creates a fuzzy rule
base by expressing every single rule in terms of a fuzzy
implication. This rule base is then used in a test phase to
classify new unseen cases by applying projection and
cylindrical extension between every test caseD and the
existing set of classification rulesP. This latter operation
leads to an activation measure for every ruleG in P which
indicates how strongly a presented test case matches the
premise part ofG. NEFCLASS will classify the case at
issue into the class which corresponds to the conclusion
part of the rule with the uppermost activation. Prior to the
very beginning of the learning algorithm an empty neural
network is set up with as many input neurons as there are
features in the dataset, as many output neurons as there are
different class labels and zero hidden neurons. Aside from
the construction of the neural framework a specific collec-
tion of fuzzy sets is defined for each feature. Fuzzy sets for a
specific attribute are all of a triangular type and correspond
to feature-related linguistic concepts such as ‘‘small’’,
‘‘medium’’ and ‘‘large’’ (Fig. 3).

Fig. 4 shows a fuzzy three-layer Perceptron NEFCLASS
network after the execution of the learning algorithm. Since
the network contains two input units, four hidden neurons
and two output cells, it must have been trained on a dataset
with n-tuples x(n), n ¼ 2 that belong to a certain classq i out
of the set {q1,q2}. For every input neurona i is determined a
group of membership functionsmai

xj
(t), j [ 1…Fai

� 	
which

nuance different linguistic concepts on the corresponding
feature domain. By associating a single rule for every
neuron (l) on the hidden layer, adjusting its premise part
to a conjunction of fuzzy sets on input tol unit junctions
and setting its conclusion part to the sole presentl to output
unit link, one obtains the full set of classification rules that
enclose the entire NEFCLASS network. If one equatesfai

to 3 ;i, it can be seen in Fig. 4 every predefined member-
ship function is (accidentally) preserved in at least one rule
r i, i [ {1,2,3,4}.

The establishment of a network structure takes place
during the learning algorithm of NEFCLASS. This algor-
ithm is split up into two subroutines: the construction of an
initial rule base and the tuning of fuzzy set membership
functions.

3.2.1. Construction of an initial rule base
During the rule base construction phase, patterns are pre-

sented to the algorithm, hidden neurons are created and
attached to a particular output unit and fuzzy sets are placed
on connections between input units and hidden nodes. The
rule base learning algorithm mainly consists of five different
steps:

1. propagate the next pattern (i p,tp) through the network
where tp covers the desired network output for pattern
p. ; input units a i [ I, find m(ai )

xh(ai Þ
(t) with

m(ai )
xh(ai )

(t) ¼ maxd[{1 , …,fai
} m(ai )

xd
(t)(a(0)

pai
)

� 	
2. when no rule unitnh exists with W(1)

a1nh
(t) ¼m(a1)

xh(a1)
(t),

W(1)
a2nh

(t) ¼ m(a2)
xh(a2)

(t), …, W(1)
aĩnh

(t) ¼m(aĩ )
xh(aĩ )

(t) create a new
rule unit and connect it with output neuronbo if tpbo

¼ 1.
3. return to 1 as long as there remain unprocessed input/

output pairs
4. the final rule base is determined by means of the follow-

ing routine: steps 1 through 4 are executed without an
upper bound on the maximum number of rules in the
network.

When all patterns have been sent through the network,
one calculates for each separate class the accumulated acti-
vation (aa) of every single rule unit by propagating every
pattern once more through the network. If the aa value for a
rule unit for a certain class labelq j exceeds the value for the
labelq i out of the conclusion part of the rule, the conclusion
is altered fromq i to q j. After modifying some conclusions,
all patterns are presented to the network a third time and one
calculates now for each rule unit the value:

vnh
¼

∑
p

a(1)
pnh

:ep

wherea(1)
pnh

¼ activation of rule unitnh for patternp and

ep ¼
1 if p is classified correctly

¹ 1 else

(
The final rule base is then constructed by keepingkmax hid-
den units with the highestvnh

value. In that way, one effec-
tively avoids the learning process becoming dependent on
the sequence of presented patterns. Fig. 5 illustrates the
possible structure of a NEFCLASS network after processing
two patterns.

Fig. 2. Cylindrical extension ofmH(x1) into (x1,x2).

Fig. 3. Fuzzy sets and associated linguistic concepts for a particular input
neuron.
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3.2.2. The fuzzy set learning algorithm
After NEFCLASS has produced a rule base, fuzzy sets on

input to hidden unit connections are tuned to optimize
classification results. The fuzzy set learning algorithm of
NEFCLASS is a variant of the well-known back-
propagation algorithm to train multi-layer Perceptron
networks by altering weights on neuron to neuron junctions.
Since non-differentiablet-norms are used as activation
functions for hidden units, direct application of classical
back-propagation to fuzzy NEFCLASS systems is impossi-
ble. Therefore, one has to forge a steepest descent heuristic
which adjusts fuzzy membership functions on the basis of
the fuzzy error of an output unitbo:

Epbo
¼ 1¹ e ¹ «(tpbo ¹ o(2)

pbo
)2

� �
wheretpbo

is the desired output of output unitbo and« is the
error sensitivity.

The fuzzy error back-propagation heuristic proceeds then
as follows:

1. Send the next input/output pair (i p,tp) through the
network.

2. Calculate for each output neuron the valuedpbo
¼

sgn(tpbo
¹ o(2)

pbo
)Epbo

where sgn stands for a signum trans-
fer function that takes on the value 1 or¹ 1 depending
on the sign of the argument.

3. For each rule unit whose output. 0:

• calculate:

dpnh
¼ o(1)

pnh
(1¹ o(1)

pnh
)
∑
o

W(2)
nhbo

(t)dpbo

• find a i [ I so thatW(1)
ainh

(t)(o(0)
pai

) ¼ mini9 { W(1)
ai9nh

(t)(o(0)
pai 9

)}
• modify the structure of the fuzzy setW(a i,nh)(t) by

means of the following delta-values (ja, jb andjc repre-
sent different learning rates):

dpb ¼ ja:dpnh
:(c¹ a):sgn(o(0)

pai
¹ b)

dpa ¼ ¹ jb:dpnh
:(c¹ a) þ dpb

dpc ¼ jc:dpnh
:(c¹ a) þ dpb

The above delta-values indicate the mutations that will
have to be applied to the structure pointsa, b andc.

4. When a full cycle has been processed (all patterns are
propagated through the network) and some stopping con-
dition is met, then stop; otherwise continue with step 1
(see Fig. 6 for an example).

4. Results

In this section, we will compare the performance of C4.5
and NEFCLASS on a group of seven datasets which are
taken from the UCI repository at Irvine, CA. Two experi-
ments were conducted. In the first experiment, both algo-
rithms were compared on the original datasets. The only
pre-processing done was the removal of the unknown values
from the datasets. In the second experiment, some additional
pre-processing (feature selection and discretization) was
performed before running the classification algorithms.
The accuracy percentages were achieved by performing a
stratified 10-fold cross validation.

4.1. Before discretization and feature selection

In Table 1 results of C4.5 and NEFCLASS on the
training set and on the test set are depicted. Also the number
of rules used to classify the objects can be found in the
table.

A quick comparison reveals that on average the perfor-
mance of C4.5 is better. Furthermore, the incapability of
NEFCLASS to build compact rule bases can be concluded.
If one takes a closer look at the rule base construction phase
of NEFCLASS, the inevitability of encountering classifi-
cation rule abundance becomes clear. If one defines three

Fig. 5. Possible network structure after processing two patterns.

Fig. 4. NEFCLASS network (left) and its corresponding rule base (right).
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linguistic concepts for every feature out of a dataset contain-
ing y 10-tuplesx (10), the total number of rules might come
very close toy since generally 310 is much higher thany. In
fact, it is easy to see rule base magnitude will be a decreas-
ing function of global dataset entropy, and hence of the
overall degree of attribute to attribute correlations. In
that respect, great care should be taken when adjudging
NEFCLASS of composing complex collections of rules
since the results below are retrieved by imposing no
restrictions at all on the number of classification rules.
Moreover, several experiments have been conducted in
which a decreasing upper bound was instated on the extent
of generated NEFCLASS rule bases.

Fig. 7 shows (full lines represent results on training data,
dashed lines give the performance on test data) rule bases
can be shrunk for some datasets (like breast and pima) to the
level of 5% of their original size without a substantial loss in
accuracy while for other datasets (like heart) rule base con-
tractions lead to a collapse in performance.

In the context of the preceding phenomena, it seems
imperative we integrate the NEFCLASS algorithm with
some kind of auxiliary processing to create acceptable
rule base magnitudes without causing global downfalls in
accuracy for particular datasets.

4.2. After discretization and feature selection

In the second experiment we conducted, it was investi-
gated how the results were influenced by means of discre-
tization (the process which transforms continuous features
in nominal ones by splitting up the domain of the feature in
non-overlapping partitions) and feature selection (selecting
the relevant subset of features). Both discretization and
feature selection reduce the possible hypothesis space and
so make it easier for the learning algorithm to classify new
instances. It may seem strange that these simplifications
may result in better classifiers because general opinion has
it that it is best to collect as many data as possible, and
subsequently let the learning system pick the relevant attri-
butes. Of course, if an ideal algorithm should be used, this
algorithm’s performance should not degrade if more data
are present. In practice, however, it has been shown that the
performance of most learning algorithms degrades severely
when too many irrelevant features are present in the data.
Many discretization and feature selection and discretization
algorithms exist in the literature. In this experiment, we used

the discretization algorithm of Fayyad and Irani (1993) and
the feature selection algorithm proposed by Kohavi (1995).
As can be seen in Table 2, minor accuracy differences
between C4.5 and NEFCLASS exist for some datasets
(breast, heart, monks2 and pima) while huge contrasts can
be observed for others (aucrx, monks1, monks3).

On average, C4.5 still outperforms NEFCLASS although
the difference is smaller compared to the results without
discretization and feature selection. Another observation
we can make is that although the accuracy attained after
discretization and feature selection is even higher, the
number of rules needed to make a classification is reduced.
This reduction is rather small for C4.5, but for NEFCLASS
a very large reduction is obtained. This reduction is very
important if we want to explain to the user the decision
taken in a given situation because compactness of a classi-
fier can greatly enhance its comprehensibility. For example,
in Wets et al. (1997) it was demonstrated how after discre-
tization and feature selection decision tables can be used to
effectively visualize the extracted knowledge to the user.

Fig. 7. Accuracy as a function of rule base extent.

Fig. 6. Possible tuning scenarios of some membership functions.

Table 1
Results before discretization and feature selection

Data Acc. training data Acc. test data No. of rules

C4.5 NEF. C4.5 NEF. C4.5 NEF.

Aucrx 91 89.4 98.7 87.5 12 283
Breast 97.1 95.1 94.7 95.6 16 218
Heart 91 92.0 77 61 13 237
Monks1 100 86.6 100 81.6 22 208
Monks2 88.4 86.8 69.8 83.4 34 211
Monks3 99 84.3 98 80.8 12 210
Pima 68.6 74.4 63.3 73.4 9 163
AVG 90.7 86.9 85.9 80.5 16.9 218.6
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5. Conclusions

In this paper, two existing classifiers (C4.5 and NEF-
CLASS) have been studied. While the C4.5 program is a
typical machine learning induction algorithm, the NEF-
CLASS strategy combines fundamental aspects of the
domain of fuzzy set theory with a multi-layer neural
Perceptron network. Based on the outcome of our experi-
ments, it can be concluded that on average C4.5 outperforms
NEFCLASS before and after discretization and feature
selection. However, it is important to note that on some
datasets NEFCLASS performs better than C4.5, while on
others it does a lot worse. A topic for further research will be
to investigate whether specific characteristics of data can be
found, which explain this behaviour.

Secondly, we can conclude that discretization and feature
selection improved the attained accuracy of both classifiers
and the modifications. The experiments have unveiled the
substantial reduction in rule base magnitude that can be

obtained by pre-processing both C4.5 and NEFCLASS
with discretization and feature selection. This is very impor-
tant if we not only want to use the rules for classification
purposes but also to explain to the user why a certain deci-
sion has been made.
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Table 2
Results after discretization and feature selection

Data Acc. training data Acc. test data No. of rules

C4.5 NEF. C4.5 NEF. C4.5 NEF.

Aucrx 87 85.4 85 95.4 3 22
Breast 96.7 97 96.5 95.2 5 18
Heart 83.8 83.8 82.7 82.5 8 23
Monks1 100 83.6 100 83.0 22 18
Monks2 99.9 100 96.6 98 40 61
Monks3 96.5 81.5 95.7 81.5 8 6
Pima 78.4 74.4 77.9 71.4 6 13
AVG 91.8 86.5 90.6 86.7 13.1 23.0
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